Schlagwort-Archive: GeoTools

Visualisierung von Geodaten in RapidMiner Server

(English version)

Nach der Artikelserie über GIS in RapidMiner Studio (1234) geht es nun darum, wie die erhaltenen Ergebnisse visualisiert werden können. In Studio sind die Möglichkeiten dafür ja ziemlich eingeschränkt: Punkt-Daten können noch halbwegs als Scatterplots angezeigt werden, aber für Linien und Flächen gibt es keine guten Methoden.

RapidMiner Server bietet aber mit den Webapps die Möglichkeit einer flexiblen Visualisierung durch die Einbindung von JavaScript.

Einbindung von GeoTools

Für die nachfolgende Vorgehensweise ist es nicht notwendig, den Server ähnlich wie Studio mit Geo-Libraries auszustatten. Wenn man jedoch die gleichen GIS-Funktionen wie in Studio verwenden will, kann es sinnvoll sein.

Ausgehend vom eingerichteten geoscript-Verzeichnis wie im ersten Teil der Anleitung werden die Jar-Bibliotheken aus diesem Verzeichnis in die EAR-Datei des Servers kopiert. Man braucht dazu ein Zip-Werkzeug, ich habe den Midnight Commander verwendet.

  1. RapidMiner Server beenden
  2. rapidminer-server/standalone/deployments/rapidminer-server-X.Y.Z.ear zur Sicherheit anderswo hinkopieren
  3. Aus dem lib/-Verzeichnis die alte groovy-X.jar löschen und die neue aus der Studio-Installation hineinkopieren
  4. Alle Jar-Dateien aus dem geoscript-Ordner der Studio-Installation auch in lib/ kopieren. Wenn eine Datei schon vorhanden ist, muß sie nicht überschrieben werden.
  5. RapidMiner Server starten.

Danach sollten alle Prozesse mit GIS-Verarbeitung aus Studio auch am Server funktionieren.

Visualisierung in Webapps

Meine Wahl fiel auf die Leaflet-Library, da sie Open Source und gut dokumentiert ist. Da wir in RapidMiner keinen eigenen GIS-Datentyp haben und die bisherigen Prozesse die Geodaten als WKT (Well Known Text)  verarbeiten, brauchen wir noch die Mapbox-Omnivore-Library. Diese konvertiert WKT-Daten in GeoJSON, das bevorzugte Format von Leaflet.

Vor der Erstellung des Webapps bauen wir einen Prozess in Studio, der die gewünschten Daten ausgibt. Ein Beispielprozess könnte vom Wiener Open-Data-Server die Bezirksgrenzen als CSV und Bevölkerungsstatistiken holen. Die Bezirke werden über ein gemeinsames Feld (NUTS-Id) verknüpft. Der Output des Prozesses ist eine Tabelle mit den Geodaten des Bezirks, ihrer Fläche, der Gesamtbevölkerung und der Bevölkerungsdichte. Für die Bevölkerungsdichte errechnen wir mit Generate Attributes die Anzahl der Personen pro Quadratkilometer und klassifizieren sie, indem wir verschiedenen Wertbereichen HTML-Farben in der #AABBCC-Notation zuweisen. Hier ist die eigene Kreativität gefragt.

Der Prozess wird auf den Server gelegt. Unter Processes/Services legen wir eine neue Eintragung an und nennen sie z. B. ViennaDistrictPopDensitySvc. Wir wählen als Datenquelle den vorhin angelegten Prozess und als Output Format JSON. Es ist sinnvoll, dieses Webservice als anonym/öffentlich aufzusetzen, um zusätzliche Paßworteingaben zu vermeiden.

In der neuen Webapplikation erzeugen wir eine Komponente vom Typ Text, und schalten „Use graphical editor“ ab. Danach geben wir den HTML- und JavaScript-Code ein.

Infrastruktur


<div id="map">
</div>


<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.6.4/leaflet.js"></script>
<link rel="stylesheet" type="text/css" href="http://cdn.leafletjs.com/leaflet-0.6.4/leaflet.css"/>
<script src="https://api.mapbox.com/mapbox.js/plugins/leaflet-omnivore/v0.2.0/leaflet-omnivore.min.js"></script>


<style type="text/css">
 #map { 
 height: 650px; 
}
</style>

Dieser Teil holt die Leaflet- und Omnivore-Komponenten und erzeugt ein Objekt, in das die Karte eingefügt werden kann. Im CSS wird die Höhe in Pixeln angegeben (z. B. 650px).

Danach starten wir mit <script language="JavaScript"> einen JavaScript-Block, der am Ende mit </script> geschlossen wird.

Definition der Basiskarte

// Create the map
var map = L.map('map').setView([48.17, 16.4], 11);
// Set up the OSM layer
L.tileLayer(
    'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', 
    {
       maxZoom: 18,
       attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors; District data: Open Data Vienna'
    }
).addTo(map);

Hier erzeugen wir das Kartenobjekt mit einer OpenStreetMap-Hintergrundkarte. Die Initialisierungsparameter sind Längen- und Breitengrad der anfänglichen Position der Karte, die Zahl dahinter (11 in diesem Beispiel) die Zoom-Stufe.

Es gibt viele Tile-Server, man sollte die Nutzungsbedingungen prüfen und die Herkunftsangabe (attribution) entsprechend anpassen.

Daten des RapidMiner-Prozesses holen

var Httpreq = new XMLHttpRequest();
Httpreq.open("GET","/api/rest/public/process/ViennaDistrictPopDensitySvc?",false);
Httpreq.send(null);
var mapdata = JSON.parse(Httpreq.responseText);

Dieser Block holt vom lokalen (oder auch einem beliebigen anderen) RapidMiner Server die Daten des Prozesses im JSON-Format und legt sie im mapdata-Objekt ab. Die URL des Webservice kann hier angepaßt werden.

Anzeige der Geo-Objekte

for (i = 0; i < mapdata.length; i++) {
  var district = omnivore.wkt.parse(mapdata[i].SHAPE);
  district.addTo(map)
    .bindPopup(mapdata[i].NAME + "
Population density: " + mapdata[i].POP_DENSITY)
    .setStyle({color: mapdata[i].densityColor, weight: 2, fillOpacity: 0.3});
}

Hier verarbeiten wir die Ergebnisse des Prozesses in einer Schleife. Aus jeder Zeile wird die Form des Bezirks (Attribut SHAPE in den Beispieldaten) mit Hilfe von Omnivore konvertiert, und als neues Objekt zur Karte hinzugefügt.
Mit .setStyle(...) ordnen wir die im Prozess erzeugte Farbabstufung (im Beispiel das densityColor-Attribut) zu.
Als zusätzliche Information erzeugen wir mit .bindPopup(...) noch ein Popup-Fenster, das beim Klick auf einen Bezirk angezeigt wird und zusätzliche Informationen enthält.

Linien-Daten werden ganz ähnlich angezeigt und verarbeitet. Bei Punkt-Daten können verschiedene Marker definiert werden, bei Leaflet gibt es die Anleitung dazu.

Damit ist das Ziel erreicht: RapidMiner Server zeigt eine Karte an, deren Daten (Punkte, Linien oder Flächen) in einen RapidMiner-Prozess verarbeitet wurden.

Bevölkerungsdichte pro Bezirk in Wien
Bevölkerungsdichte pro Bezirk in Wien (Daten: Open Data Wien)

Displaying geographic data in RapidMiner Server

After the series of blog posts about GIS in RapidMiner Studio (1234) we’d probably like to visualize our results. The mechanisms in Studio are quite limited: we can create scatter plots from point data but there is no good method for displaying lines and areas.

However, RapidMiner Server offers webapps and powerful visualization using JavaScript.

Using GeoScript in processes

For displaying geographic data it’s not necessary to set up the server with the GeoScript libraries. However, if you want to execute the GIS processes like in studio, it can be a good idea to do so.

Start with the geoscript directory set up in the first part. You’ll need a Zip utility; I used Midnight Commander.

  1. Stop RapidMiner Server
  2. Make a backup copy of rapidminer-server/standalone/deployments/rapidminer-server-X.Y.Z.ear somewhere else
  3. Delete the old groovy-X.jar from the lib/ directory and put in the new one from the Studio installation
  4. Copy all jar files from the geoscript directory of the Studio installation to lib/. Existing files don’t need to be overwritten.
  5. Start RapidMiner Server.

After this process, all your Studio GIS processes should work in the Server.

Map display in webapps

I chose the Leaflet library, as it is open source and well documented. There is no special GIS data type in RapidMiner and the processes in the tutorials used WKT (Well Known Text) until now, so we’ll also need the Mapbox Omnivore library. This converts WKT data to GeoJSON which Leaflet prefers.

Before starting with the web app, we need to build a process in Studio for creating the data. An example process could use the district boundaries as CSV and the population statistics from the Vienna Open Data server. It joins the districts using a common attribute (NUTS id). The output of the process is a table with the district boundaries, their area, the total population and the population density. We also use Generate Attributes to classify the population density with HTML colors (#AABBCC notation). You can get creative here and use the entire functionality of RapidMiner.

The process is saved on the server. We create a new entry in Processes/Services and call it for example ViennaDistrictPopDensitySvc. The data source is the process created before, the output format is JSON. It is a good idea to set up this web service for public anonymous access.

In a new web app we create a Text component and uncheck the „Use graphical editor“ checkbox to enter HTML and JavaScript code.

Infrastructure


<div id="map">
</div>


<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.6.4/leaflet.js"></script>
<link rel="stylesheet" type="text/css" href="http://cdn.leafletjs.com/leaflet-0.6.4/leaflet.css"/>
<script src="https://api.mapbox.com/mapbox.js/plugins/leaflet-omnivore/v0.2.0/leaflet-omnivore.min.js"></script>


<style type="text/css">
 #map { 
 height: 650px; 
}
</style>

This part fetches the Leaflet and Omnivore components and creates a DIV object for the map. We specify the map height in pixels in the CSS block (e. g. 650px).

Then a JavaScript block is started with <script language="JavaScript">. Don’t forget to close the block with </script> at the end.

Setting up the base map

// Create the map
var map = L.map('map').setView([48.17, 16.4], 11);
// Set up the OSM layer
L.tileLayer(
    'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', 
    {
       maxZoom: 18,
       attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors; District data: Open Data Vienna'
    }
).addTo(map);

This creates a map object with an OpenStreetMap background layer. The initialization parameters are latitude and longitude of the initial position, and the zoom level (11 in this example).

There are many tile servers available. Be sure to check the terms of usage and update the attribution appropriately.

Getting data from the RapidMiner process

var Httpreq = new XMLHttpRequest();
Httpreq.open("GET","/api/rest/public/process/ViennaDistrictPopDensitySvc?",false);
Httpreq.send(null);
var mapdata = JSON.parse(Httpreq.responseText);

This part fetches the data in JSON format from the local RapidMiner Server and stores them in the mapdata variable. To refer to another web service, change the URL.

Displaying the objects on the map

for (i = 0; i < mapdata.length; i++) {
  var district = omnivore.wkt.parse(mapdata[i].SHAPE);
  district.addTo(map)
    .bindPopup(mapdata[i].NAME + "
Population density: " + mapdata[i].POP_DENSITY)
    .setStyle({color: mapdata[i].densityColor, weight: 2, fillOpacity: 0.3});
}

Here, a loop processes the process results. The Omnivore function converts the district area (SHAPE attribute in the example data) to a new object on the map.
We assign the color calculated in the process with .setStyle(...) (densityColor attribute in this example).
We also create a popup window with additional information using .bindPopup(...). It will be displayed when the user clicks a district.

Displaying line data is very similar. For displaying point data, you can use different markers. This is described by a Leaflet tutorial.

So we reached our goal: RapidMiner Server displays a map with data (points, lines or areas or even a combination) coming from a RapidMiner process.

Population density by district in Vienna
Population density by district in Vienna (Data: Open Data Vienna)

GIS in RapidMiner (3) – Distanz, Fläche

(English version)

Nach der Einführung und dem Datenimport geht es nun an echte geographische Berechnungen.

Eine der wichtigsten Informationen ist die Distanz von Objekten voneinander oder einem Referenzpunkt. Auch Data-Mining-Verfahren wie k Nearest Neighbors berechnen Distanzen.

Zwei verschiedene Methoden stehen uns zur Verfügung, um Distanzen zwischen zwei Punkten auf der Erdoberfläche zu berechnen: Entweder können wir die Punkte als zweidimensionale Geometrie mit X- und Y-Koordinaten auffassen (die Berechnung ist dann ganz einfach), oder die Distanz auf der Oberfläche des Ellipsoids der Erde ausrechnen. Die zweite Vorgehensweise ist mathematisch natürlich deutlich aufwändiger, liefert aber bei größeren Distanzen (z. B. Orte auf verschiedenen Kontinenten) genauere Daten. Deswegen wird in vielen Anwendungen, die nur Objekte in einem eingeschränkten Gebiet enthalten, auf die erste Methode zurückgegriffen.

Transformation in eine andere Projektion (Koordinatensystem)

Wie in der Einführung ausgeführt müssen wir die Geometrien manchmal in andere Projektionen transformieren, um mit sinnvollen Einheiten wie Meter rechnen zu können. Die Methoden dafür sind in GeoScript enthalten und ihre Anwendung ist recht einfach:


import geoscript.proj.*;

fromProj = new Projection("epsg:4326");
toProj = new Projection("epsg:3035");

projectedGeom = Projection.transform(geom, fromProj, toProj);

Ein fertig anwendbarer RapidMiner-Prozess befindet sich hier. Er braucht drei Parameter, die als Makros im Prozesskontext definiert sind und beim Aufruf angegeben werden können:

GEOM_ATT: Name des Attributs, das die zu transformierende Geometrie (im WKT-Format) enthält

FROM_PROJECTION, TO_PROJECTION: Die EPSG-Nummern der Quell- und Zielprojektion.

Damit lassen sich die Koordinaten leicht von einem allgemeinen Koordinatensystem wie WGS84 (Längen- und Breitengrad, EPSG:4326) in  ein gebräuchlicheres wie z. B. ETRS89/Austria Lambert (EPSG:3416) konvertieren. Das werden wir im nächsten Beispielprozess anwenden, um Distanzen zwischen Objekten in Wien, aber auch Fläche und Umfang von Bezirken zu berechnen.

Berechnung von Distanz, Fläche und Umfang

GeoScript enthält dafür einfach anzuwendende Funktionen:

flaeche = geom.getArea();
umfang = geom.getLength();
//Für die Distanz brauchen wir eine zweite Geometrie
distanz = geom1.distance(geom2);

Sobald man das Geometrie-Objekt in einer richtigen Projektion hat, sind die Berechnungen ganz simpel.

getArea() liefert die Fläche eines Polygons oder einer Polygongruppe (Multipolygon); getLength() die Länge einer Linie oder den Umfang eines Polygons, jeweils in den Einheiten der aktuellen Projektion.

Für die Distanz brauchen wir ein zweites Geometrie-Objekt, das nicht unbedingt ein Punkt sein muß – es ist auch möglich, die Distanz zwischen Linien und Flächen zu berechnen.

Der Beispielprozess holt zwei Datensätze vom Open-Data-Portal der Stadt Wien: Museen (Punkte) und Bezirksgrenzen (Polygone). Beide werden aus Längen- und Breitengrad-Koordinaten in eine in Österreich gebräuchliche, meter-basierte Projektion transformiert. Mit getArea() und getLength() werden Fläche und Umfang der Bezirke berechnet. Da der Original-Datensatz diese Information bereits enthält, können wir leicht prüfen, ob die Berechnungen korrekt sind. (Kleine Unterschiede resultieren wohl aus der Rundung der Koordinaten für den CSV-Export.)

Dann wird noch der erste Bezirk selektiert und mit dem Museums-Datensatz zusammengeführt. In diesem kombinierten Datensatz haben wir nun zwei Geometrien, wir können also die Entfernung des Museums von der Innenstadt berechnen. Punkte, die im Polygon des ersten Bezirks liegen, haben die Distanz 0.

Berechnung von Distanzen auf der Erdoberfläche

Die zweite, genauere, aber langsamere Berechnungsmethode kann auch recht einfach angewendet werden. Hierfür importieren wir aus der GeoTools-Library, auf die GeoScript aufbaut, die Klasse GeodeticCalculator. (Die Bibliotheken, die wir in der Einführung für GeoScript übernommen haben, reichen dafür aus, wir müssen also nichts Neues installieren.)

Für diese Methode brauchen wir die Längen- und Breitengrade von zwei Punkten, also WGS84-Koordinaten. (Es gäbe auch die Möglichkeit, transformierte Koordinaten zu verwenden, dafür müßten wir dem GeodeticCalculator auch das Koordinatensystem übergeben.)

import org.geotools.referencing.GeodeticCalculator;

gcalc = new GeodeticCalculator();

gcalc.setStartingGeographicPoint(lon1, lat1);
gcalc.setDestinationGeographicPoint(lon2, lat2);

distance = gcalc.getOrthodromicDistance();

Hier ist es wichtig, die Reihenfolge der Koordinatenangaben zu beachten. In anderen Bereichen sind wir gewohnt, X- und Y-Koordinaten in dieser Reihenfolge anzugeben, GIS-Systeme arbeiten jedoch manchmal mit der Reihenfolge Y, X.

Der Beispielprozess enthält die Koordinatenpaare einiger Hauptstädte auf verschiedenen Kontinenten. Mit einem Cartesian Product werden alle Städte mit allen anderen verknüpft und jeweils die Distanzen in km berechnet. (Die berechneten Distanzen habe ich mit PostGIS verifiziert; die Ergebnisse sind sehr genau.) Für diese Distanzen würde eine Berechnung mit der Geometrie-Methode schon sehr große Ungenauigkeiten liefern, hier empfiehlt es sich also sehr, die GeodeticCalculator-Methode zu nutzen.

GIS in RapidMiner (3) – Distance and Area

After the introduction and data import we can start to perform actual geographic calculations.

One of the most important measures is the distance of objects from each other or from a reference point. Distances are also calculated by data mining operations like k Nearest Neighbors.

Two different methods of calculating distances between points on the surface of Earth exist: Either we can pretend that the points are in a two-dimensional geometry with X and Y coordinates (which makes the distance calculation very easy), or we use the actual Earth ellipsoid for the calculation. The second method is very computing-intensive, but it returns more precise results when used on larger distances (e. g. places on different continents). For many operations acting on a limited area, the first method is used.

Transformation to another projection (coordinate system)

As described in the introduction, we often need to transform geometries to different projections so we can use units like meters. Coordinate system transformation is also available in GeoScript, and using it is quite easy.

import geoscript.proj.*;

//Source and destination projections
fromProj = new Projection("epsg:4326");
toProj = new Projection("epsg:3035");

projectedGeom = Projection.transform(geom, fromProj, toProj);

Here is a readily usable RapidMiner process. It takes three parameters that can be specified as macros in the process context. You can overwrite them when calling the process in the Execute Process operator.

GEOM_ATT: Name of the attribute that contains the geometry to be transformed (in WKT format)

FROM_PROJECTION, TO_PROJECTION: The EPSG numbers of the source and target projections

With this process, you can easily transform geometries from a common coordinate system like WGS84 (Latitude and Longitude, EPSG:4326) to a special one, for example ETRS89/Austria Lambert (EPSG:3416). We will use this in the example process for calculating distances between objects in Vienna, Austria and also determine the area and circumference of Vienna’s 23 districts.

Calculating distance, area and circumference

GeoScript contains easy to use functions:

area = geom.getArea();
circumference = geom.getLength();
//We need a second geometry for calculating distance
distance = geom1.distance(geom2);

After having transformed the geometry object into a matching projection, the calculations are really simple.

getArea() returns the area of a polygon or a group of polygons (Multipolygon); getLength() gives the length of a line or the circumference of a polygon in the units of the used projection.

For calculating the distance, a second geometry object is required. It doesn’t need to be a point: it’s also possible to calculate the distance between lines and areas.

The example process fetches two data sets from the Vienna Open Data Portal: Museums (points) and district borders (polygons). The process transforms then from latitude and longitude coordinates into a projection used in Austria. One script calculates the area and circumference of the districts using getArea() and getLength(). The original data set already contains these measures so we can easily check that they’re correct. (Small differences are the consequence of rounding the coordinates for CSV export.)

After that, the first district (Inner City) is selected and joined with the museum data set. The combined data set contains two geometries in a common projection, so we can calculate the distance between the museum and the Inner City. Points in the first district have a distance of 0.

Calculating distances on the surface of Earth

The second calculation method (more precise but slower) can also be used quite easily. For this, we import the class GeodeticCalculator from the GeoTools library, a base component of GeoScript. (The GeoScript libraries installed in the introduction are enough for this, we don’t need to set up more stuff.)

For using this method, we need latitude and longitudes of two points, in other words WGS84 coordinates. (It would be possible to use transformed coordinates by specifying a coordinate system in the GeodeticCalculator.)

import org.geotools.referencing.GeodeticCalculator;

gcalc = new GeodeticCalculator();

gcalc.setStartingGeographicPoint(lon1, lat1);
gcalc.setDestinationGeographicPoint(lon2, lat2);

distance = gcalc.getOrthodromicDistance();

Be careful when specifying the coordinates. We usually write X and Y coordinates in this order but GIS tools often use the order Y, X.

The example process contains coordinate pairs of a few capital cities lying on different continents. We build a Cartesian Product of all cities and calculate their distances in kilometers. (The distances were verified with PostGIS, they are very precise.) On these distances, using the geometry method would result in huge inaccuracies, so it’s really better to use the GeodeticCalculator method there.