Data Science with PostgreSQL

Balázs Bárány

Data Scientist

pgconf.eu 2015

Contents

Introduction – What is Data Science?
Process model

Tools and methods of Data Scientists

Data Science with PostgreSQL

Business & data understanding

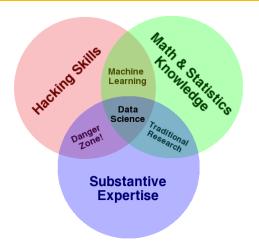
Preprocessing

Modeling

Evaluation

Deployment

Summary


Sexiest job of the 21st century

► According to Google, LinkedIn, ...

Sexiest job of the 21st century

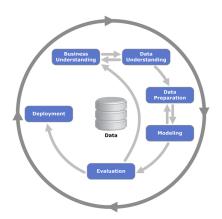
- ► According to Google, LinkedIn, ...
- ► Who is a Data Scientist?

Data Science Venn Diagram

(c) Drew Conway, 2010. CC-BY-NC

- ► Get data from various sources
 - ► Big data?

- ► Get data from various sources
 - ► Big data?
- ► Mash up & format for analysis


- ► Get data from various sources
 - ▶ Big data?
- ► Mash up & format for analysis
- ► Analyze & visualize

- ► Get data from various sources
 - ► Big data?
- ► Mash up & format for analysis
- ▶ Analyze & visualize
- ► Predict & prescribe

- ► Get data from various sources
 - ► Big data?
- ► Mash up & format for analysis
- ▶ Analyze & visualize
- Predict & prescribe
- ► Operationalize

∟Process model

The Data Mining process

Cross Industry Standard Process for Data Mining (Kenneth Jensen/Wikimedia Commons)

Tools and methods

Tools and methods

Scripting and programming

- ▶ R
- Python with extensions
- ► Octave/Matlab, other mathematic languages
- ► Hadoop and Big Data programming libraries (mostly Java)
- Cloud services

Integrated GUI tools

- ▶ (partly) Open Source: RapidMiner, KNIME, Orange
- ► Data Warehouse tools extended for analytics: Pentaho, Talend
- ▶ Many commercial tools, e. g. SAS, IBM SPSS
- ► Hadoop-related newcomers: e. g. Datameer

Data Infrastructure

- ► Databases and data stores
 - ► Relational, NoSQL
 - Hadoop clusters
 - ▶ In-memory
- Data streams
- ► Free-form data: text, images, video, audio, ...
- ▶ Web APIs
- ► Open Data

► Data ingestion in raw format

- ► Data ingestion in raw format
- ► Joining, aggregating, filtering, calculating, ...

- ▶ Data ingestion in raw format
- ▶ Joining, aggregating, filtering, calculating, ...
- Data cleansing
 - Missing values
 - ► Abnormal values

- ► Data ingestion in raw format
- ▶ Joining, aggregating, filtering, calculating, ...
- Data cleansing
 - Missing values
 - ► Abnormal values
- ► Result: data set suitable for analytics

Predictive Modeling

- ► Supervised and unsupervised methods
 - ► Target variable known or not

Predictive Modeling

- ► Supervised and unsupervised methods
 - Target variable known or not
- ► Classification (supervised): Prediction of a class or category
- ► Regression (supervised): Prediction of numeric value

Predictive Modeling

- ► Supervised and unsupervised methods
 - ► Target variable known or not
- ► Classification (supervised): Prediction of a class or category
- Regression (supervised): Prediction of numeric value
- ► Clustering (unsupervised): Automatic "grouping" of data
- lacktriangle Association analysis, outlier detection, time series prediction,

. . .

Deployment and operationalization

- ► Model application to new data => prediction + confidence
- ► What to do with predictions?

Deployment and operationalization

- ► Model application to new data => prediction + confidence
- What to do with predictions?
- ► Store in ERP or CRM
- ► Tell someone (email, popup)
- ► Add a label (e. g. mark email as spam)

- ► Model application to new data => prediction + confidence
- What to do with predictions?
- ► Store in ERP or CRM
- ▶ Tell someone (email, popup)
- ► Add a label (e. g. mark email as spam)
- ► Interrupt financial transaction => prescription
- ► Order supplies => prescription

Data Science with PostgreSQL

Doing Data Science with PostgreSQL

Caveats

► This stuff is not easy

Caveats

- ► This stuff is not easy
- Must be root and postgres
 - ► Maintain your PostgreSQL yourself
 - ► Able to compile stuff

Caveats

- ► This stuff is not easy
- Must be root and postgres
 - Maintain your PostgreSQL yourself
 - ► Able to compile stuff
- ► You should ask ;-)
 - your boss
 - co-workers
 - customer

Business understanding

- ▶ What is the purpose of the business?
- ► What are existing processes?
- Drivers of business success

Business understanding

- ► What is the purpose of the business?
- ▶ What are existing processes?
- ► Drivers of business success
- ► Project goals and challenges
- Availability of data and resources
- Success criteria

Business understanding

- ► What is the purpose of the business?
- ► What are existing processes?
- Drivers of business success
- ► Project goals and challenges
- Availability of data and resources
- ► Success criteria
- ▶ Not a technical activity, PostgreSQL can't help much

- ► Existing data
 - Entities and covered concepts
 - ► Complete? Correct? In suitable form?
 - ► Usable? (regulations, access constraints, ...)

- ► Existing data
 - Entities and covered concepts
 - ► Complete? Correct? In suitable form?
 - ► Usable? (regulations, access constraints, ...)
- Connecting separate data sources
 - ► Simple or complex IDs

- ► Existing data
 - Entities and covered concepts
 - ► Complete? Correct? In suitable form?
 - ► Usable? (regulations, access constraints, ...)
- ► Connecting separate data sources
 - ► Simple or complex IDs
- ► Data size
 - ► Too small
 - ► Too big

- ► Existing data
 - Entities and covered concepts
 - Complete? Correct? In suitable form?
 - Usable? (regulations, access constraints, ...)
- Connecting separate data sources
 - ► Simple or complex IDs
- Data size
 - ► Too small
 - ► Too big
- Suitability for predictive modeling
 - Target variable?
 - Attribute types

Data understanding with PostgreSQL

- ► Get data into PostgreSQL
 - Classical import process
 - ► Foreign Data Wrappers

Data understanding with PostgreSQL

- ► Get data into PostgreSQL
 - ► Classical import process
 - ► Foreign Data Wrappers
- Analyze data distribution
 - Group by and aggregate
 - ► Count, Count Distinct, Min, Max
 - Count NULLs
 - Search for missing links (incomplete foreign keys)

Business & data understanding

Data understanding with PostgreSQL

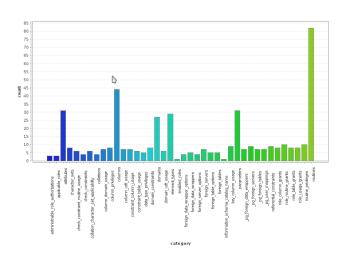
- ► Get data into PostgreSQL
 - Classical import process
 - Foreign Data Wrappers
- Analyze data distribution
 - Group by and aggregate
 - Count, Count Distinct, Min, Max
 - ► Count NULLs
 - Search for missing links (incomplete foreign keys)
- Analyze "surprizes"
 - Impossible values
 - Missing values in "required" fields

Data understanding with PostgreSQL - summary

- ► Good SQL knowledge required
- ► Tedious manual process
 - repetitive
 - not suitable for large number of attributes
- ► No built-in visualization

Data understanding with PostgreSQL - summary

- ► Good SQL knowledge required
- ► Tedious manual process
 - ► repetitive
 - not suitable for large number of attributes
- ► No built-in visualization
- ► Or maybe...

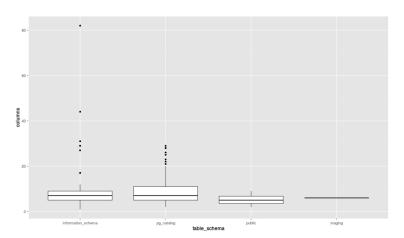

SQL barchart output

```
foreign table options
foreign tables
                                                ###
information schema catalog name
key column usage
                                                #####
parameters
                                                ######################
pg_foreign_data_wrappers
                                                ####
pa foreian servers
                                            9 | #####
pg foreign table columns
                                            4 | ##
pg foreign tables
                                                ####
pg user mappings
                                                ####
referential constraints
                                            9 | #####
role column grants
                                                ####
                                           10 i
role routine grants
                                                ######
role table grants
                                            8 i ####
role udt grants
                                                ####
role usage grants
                                                ####
                                           10 i
routine privileges
                                                ######
                                           82 i
routines
                                                ***********************************
schemata
                                                ####
seauences
                                                #######
sql features
                                                ####
sql implementation info
                                                ###
sal languages
                                            7 | ####
sql packages
                                                ###
sql parts
                                                ###
sal sizing
sal sizina profiles
                                                ###
```

Data Science with PostgreSQL

Business & data understanding

Bar chart from GUI tool



Data Science with PostgreSQL

Data Science with PostgreSQL

Business & data understanding

Boxplot output

Data understanding wrap up

- ► DBMS not built for this
- ► It can support more specialized tools

Data understanding wrap up

- ► DBMS not built for this
- ► It can support more specialized tools
- ► Introduction: R
 - ► "A free software environment for statistical computing and graphics"
 - ► Available in PostgreSQL

PL/R: A statistical language for PostgreSQL

- ► R as a standalone language
 - ► Mathematical and statistical methods
 - ► Powerful visualization functions
 - ► Classical, modern and bleeding edge modeling
 - Arrays and data frames are central data types
 - ► Operates only in memory

PL/R: A statistical language for PostgreSQL

- ► R as a standalone language
 - ► Mathematical and statistical methods
 - Powerful visualization functions
 - ► Classical, modern and bleeding edge modeling
 - Arrays and data frames are central data types
 - Operates only in memory
- PL/R: R as a loadable procedural language for PostgreSQL
 - ► First released in 2003 by Joe Conway
 - ► License: GPL

R usage outside of PostgreSQL

- Development environments
 - RStudio (AGPL or commercial, local & web)
 - RKWard, Cantor (KDE projects)
 - ► StatET (Eclipse)
- ► Frontends
 - R Commander
 - Deducer
 - Rattle
- ► Web framework: Shiny (AGPL or commercial)

Working with R in PostgreSQL

► Install functions in the database

Example

```
select install_rcmd('
    myfunction <-function(x)
    {print(x)}
');</pre>
```

Install without function body

Example

```
CREATE FUNCTION rnorm

(n integer, mean double precision, sd double precision)

RETURNS double precision[]

AS "

LANGUAGE 'plr';
```

900

Using R in PostgreSQL for data understanding

- ► Advanced visualization
- ► Data distributions
- Advanced statistics

Using R in PostgreSQL for data understanding

- Advanced visualization
- ▶ Data distributions
- Advanced statistics
- Execution in the database
 - ► Clumsy, but direct data access

Using R in PostgreSQL for data understanding

- Advanced visualization
- ▶ Data distributions
- Advanced statistics
- Execution in the database
 - ► Clumsy, but direct data access
- ► Execution outside
 - Simple and interactive, but data transfer

Preprocessing

► What databases are built for

Preprocessing

- ► What databases are built for
- ► Rows: very dynamic
 - Easy to create new rows by joining
 - Easy to filter
- Columns: not so much
 - Easy to create new columns
 - Only explicit access

Preprocessing

- ► What databases are built for
- ► Rows: very dynamic
 - Easy to create new rows by joining
 - Easy to filter
- Columns: not so much
 - Easy to create new columns
 - Only explicit access
- Wider interpretation of preprocessing
 - ► Enrichment with external data
 - New attributes from existing ones
 - ► Recoding, recalculation
 - Missing value handling

datascientist at

Preprocessing: organizing workflow

- ► Common Table Expressions
 - organize processing steps
 - partial and intermediate results

Example

```
WITH source AS (
    SELECT *, ROW_NUMBER() OVER () AS rownum
    FROM source_table
),
no_missings AS (
    SELECT *
    FROM source
    WHERE field1 IS NOT NULL
    AND field2 IS NOT NULL
)
etc.
```

► Aggregation

- ► Aggregation
- Partial aggregation by window functions
 - ► In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)

- ► Aggregation
- Partial aggregation by window functions
 - ► In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - ► In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)

- ► Aggregation
- Partial aggregation by window functions
 - ► In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)
- Comparing to previous/next value
 - ▶ att LAG(att, 1) OVER (ORDER BY ...)

- ► Aggregation
- Partial aggregation by window functions
 - ► In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)
- Comparing to previous/next value
 - ▶ att LAG(att, 1) OVER (ORDER BY ...)
- ► Much easier in SQL than programming languages and data mining tools

► PostGIS for geodata

- ► PostGIS for geodata
- ► Foreign data wrappers (see PostgreSQL Wiki)

- ► PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)

- ► PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)
 - ▶ Big Data (Hadoop Hive, Impala)

- ► PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)
 - Big Data (Hadoop Hive, Impala)
 - ► Network sources Multicorn (RSS, IMAP, Twitter, S3, ...)
 - ► Files (CSV, ZIP, JSON, ...)

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)
 - Big Data (Hadoop Hive, Impala)
 - ► Network sources Multicorn (RSS, IMAP, Twitter, S3, ...)
 - ► Files (CSV, ZIP, JSON, ...)
 - Write your own in C or Python or Ruby

Model development

► Machine learning algorithms not well suited for SQL

Model development

- ► Machine learning algorithms not well suited for SQL
- Some attempts to build them
 - ► Naive Bayes, Linear Regression
 - ► Difficult for more advanced algorithms

Model development

- ► Machine learning algorithms not well suited for SQL
- Some attempts to build them
 - ► Naive Bayes, Linear Regression
 - ► Difficult for more advanced algorithms
- Better done in specialized language or tool
 - ► PL/R
 - ► PL/Python

PL/Python

- Python procedural language available in PostgreSQL
- scikit-learn: Machine learning toolbox for Python
 - Classification, regression, clustering
 - ► Model selection, validation
 - Preprocessing
- matplotlib: Generic and statistical plotting library

PL/Python

- ► Python procedural language available in PostgreSQL
- scikit-learn: Machine learning toolbox for Python
 - Classification, regression, clustering
 - Model selection, validation
 - Preprocessing
- ► matplotlib: Generic and statistical plotting library
- ► PL/Python is an alternative to PL/R

Evaluation of modeling results

- ► Models return predictions
- Prediction can be compared to known result (target variable)
- ▶ Measures of model performance: Accuracy, precision, recall, ...

Evaluation of modeling results

- ► Models return predictions
- Prediction can be compared to known result (target variable)
- ► Measures of model performance: Accuracy, precision, recall, ...
- ► Results on the training set meaningless

Evaluation of modeling results

- ► Models return predictions
- Prediction can be compared to known result (target variable)
- ▶ Measures of model performance: Accuracy, precision, recall, ...
- ► Results on the training set meaningless
- ► Split validation
- ▶ Cross validation

- "Good result" depends on the application
- ▶ If not good enough,

- "Good result" depends on the application
- If not good enough,
 - ► get more data

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing
 - select better classifier

- "Good result" depends on the application
- If not good enough,
 - ▶ get more data
 - do more preprocessing
 - select better classifier
 - optimize classifier parameters

- "Good result" depends on the application
- If not good enough,
 - ► get more data
 - do more preprocessing
 - select better classifier
 - ► optimize classifier parameters
- ► Cycle: preprocessing modeling evaluation

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing
 - select better classifier
 - optimize classifier parameters
- ► Cycle: preprocessing modeling evaluation
- ▶ Better done in data mining environment

- ► Advantages of deployment in the database:
 - ► Less overhead

- ► Advantages of deployment in the database:
 - Less overhead
 - ► Instant application using triggers

- ► Advantages of deployment in the database:
 - ► Less overhead
 - ► Instant application using triggers
 - ▶ Well-known execution environment

- Advantages of deployment in the database:
 - Less overhead
 - Instant application using triggers
 - ► Well-known execution environment
 - Functionality available over standard interface

- ► Advantages of deployment in the database:
 - Less overhead
 - ► Instant application using triggers
 - ► Well-known execution environment
 - Functionality available over standard interface
- ► Some models easily expressed in SQL

Deployment of PL/R or PL/Python models

► Model developed in database or outside

Deployment of PL/R or PL/Python models

- ► Model developed in database or outside
- Put into global context
 - PL/R: load("saved object", .GlobalEnv)
 - ► PL/Python: Global dictionary "GD"
- Application function in matching language
 - Uses existing model
 - Returns target variable

Deployment of PL/R or PL/Python models

- ► Model developed in database or outside
- Put into global context
 - PL/R: load("saved object", .GlobalEnv)
 - ► PL/Python: Global dictionary "GD"
- Application function in matching language
 - Uses existing model
 - Returns target variable
- ► Trigger func or UPDATE uses application function

- ► PostgreSQL's support for data science tasks
 - ► Best: preprocessing, deployment

- ► PostgreSQL's support for data science tasks
 - ► Best: preprocessing, deployment
- ► Modern SQL for preprocessing

- ► PostgreSQL's support for data science tasks
 - ► Best: preprocessing, deployment
- ► Modern SQL for preprocessing
- ► Foreign Data Wrappers for data integration

- ► PostgreSQL's support for data science tasks
 - ► Best: preprocessing, deployment
- Modern SQL for preprocessing
- ► Foreign Data Wrappers for data integration
- ► Procedural languages for data mining

Questions?

- ► Balázs Bárány, <balazs@tud.at>
- ► https://datascientist.at/