Balázs Bárány

Data Scientist

pgconf.de 2015

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Contents

Introduction – What is Data Science? Process model

Tools and methods of Data Scientists

Data Science with PostgreSQL Business & data understanding Preprocessing Modeling Evaluation Deployment

Summary

Data Science with PostgreSQL LIntroduction – What is Data Science?

Sexiest job of the 21st century

According to Google, LinkedIn, ...

Data Science with PostgreSQL LIntroduction – What is Data Science?

Sexiest job of the 21st century

According to Google, LinkedIn, ...

datascientist.at

▶ Who is a Data Scientist?

Data Science with PostgreSQL Introduction – What is Data Science?

Data Science Venn Diagram

(c) Drew Conway, 2010. CC-BY-NC datascientist.at ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

990 1

Data Science with PostgreSQL Introduction - What is Data Science?

Tasks of data scientists

Get data from various sources

datascientist.at

► Big data?

Data Science with PostgreSQL LIntroduction - What is Data Science?

Tasks of data scientists

- Get data from various sources
 - ► Big data?
- Mash up & format for analysis

Data Science with PostgreSQL LIntroduction - What is Data Science?

Tasks of data scientists

- Get data from various sources
 - Big data?
- Mash up & format for analysis

datascientist.at

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

► Analyze & visualize

Data Science with PostgreSQL —Introduction – What is Data Science?

Tasks of data scientists

- Get data from various sources
 - Big data?
- Mash up & format for analysis

datascientist.at

- Analyze & visualize
- ► Predict & prescribe

Data Science with PostgreSQL —Introduction – What is Data Science?

Tasks of data scientists

- Get data from various sources
 - Big data?
- Mash up & format for analysis

datascientist at

- Analyze & visualize
- Predict & prescribe
- Operationalize

Introduction – What is Data Science?

Process model

The Data Mining process

Cross Industry Standard Process for Data Mining (Kenneth Jensen/Wikimedia Commons)

datascientist.at

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Tools and methods

Tools and methods

Scripting and programming

► R

- Python with extensions
- Octave/Matlab, other mathematic languages
- Hadoop and Big Data programming libraries (mostly Java)

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Cloud services

Integrated GUI tools

- ► (partly) Open Source: RapidMiner, KNIME, Orange
- Data Warehouse tools extended for analytics: Pentaho, Talend

datascientist.at

- ► Many commercial tools, e. g. SAS, IBM SPSS
- ► Hadoop-related newcomers: e. g. Datameer

Data Infrastructure

- Databases and data stores
 - Relational, NoSQL
 - Hadoop clusters
 - In-memory
- Data streams
- ► Free-form data: text, images, video, audio, ...

datascientist.at

- Web APIs
- Open Data

Data acquisition and preprocessing

Data ingestion in raw format

Data acquisition and preprocessing

- Data ingestion in raw format
- ► Joining, aggregating, filtering, calculating, ...

Data acquisition and preprocessing

- Data ingestion in raw format
- ► Joining, aggregating, filtering, calculating, ...

datascientist.at

- Data cleansing
 - Missing values
 - Abnormal values

Data acquisition and preprocessing

- Data ingestion in raw format
- ► Joining, aggregating, filtering, calculating, ...

datascientist at

- Data cleansing
 - Missing values
 - Abnormal values
- Result: data set suitable for analytics

Predictive Modeling

- Supervised and unsupervised methods
 - Target variable known or not

Predictive Modeling

- Supervised and unsupervised methods
 - Target variable known or not
- ► Classification (supervised): Prediction of a class or category

datascientist.at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Regression (supervised): Prediction of numeric value

Predictive Modeling

- Supervised and unsupervised methods
 - Target variable known or not
- ► Classification (supervised): Prediction of a class or category
- Regression (supervised): Prediction of numeric value
- Clustering (unsupervised): Automatic "grouping" of data
- Association analysis, outlier detection, time series prediction,
 ...

datascientist at

Deployment and operationalization

- ► Model application to new data => prediction + confidence
- What to do with predictions?

Deployment and operationalization

► Model application to new data => prediction + confidence

datascientist at

- What to do with predictions?
- Store in ERP or CRM
- ► Tell someone (email, popup)
- Add a label (e. g. mark email as spam)

...

Deployment and operationalization

▶ Model application to new data => prediction + confidence

datascientist at

- What to do with predictions?
- Store in ERP or CRM
- Tell someone (email, popup)
- Add a label (e. g. mark email as spam)
- Interrupt financial transaction => prescription
- Order supplies => prescription

Data Science with PostgreSQL

Doing Data Science with PostgreSQL

Caveats

► This stuff is not easy

Caveats

- This stuff is not easy
- Must be root and postgres
 - Maintain your PostgreSQL yourself
 - Able to compile stuff

Caveats

- This stuff is not easy
- Must be root and postgres
 - Maintain your PostgreSQL yourself

datascientist.at

- Able to compile stuff
- You should ask ;-)
 - your boss
 - co-workers
 - customer

Data Science with PostgreSQL

Business & data understanding

Business understanding

- What is the purpose of the business?
- What are existing processes?
- Drivers of business success

Business understanding

- What is the purpose of the business?
- What are existing processes?
- Drivers of business success
- Project goals and challenges
- Availability of data and resources
- Success criteria

Business understanding

- What is the purpose of the business?
- What are existing processes?
- Drivers of business success
- Project goals and challenges
- Availability of data and resources
- Success criteria
- Not a technical activity, PostgreSQL can't help much

datascientist at

Data understanding

Existing data

- Entities and covered concepts
- Complete? Correct? In suitable form?
- ► Usable? (regulations, access constraints, ...)

Data understanding

- Existing data
 - Entities and covered concepts
 - Complete? Correct? In suitable form?
 - ► Usable? (regulations, access constraints, ...)

datascientist.at

- Connecting separate data sources
 - Simple or complex IDs

Data understanding

- Existing data
 - Entities and covered concepts
 - Complete? Correct? In suitable form?
 - ► Usable? (regulations, access constraints, ...)

datascientist at

- Connecting separate data sources
 - Simple or complex IDs
- Data size
 - Too small
 - Too big
Data understanding

Existing data

- Entities and covered concepts
- ► Complete? Correct? In suitable form?
- ► Usable? (regulations, access constraints, ...)

datascientist at

- Connecting separate data sources
 - Simple or complex IDs
- Data size
 - Too small
 - Too big
- Suitability for predictive modeling
 - Target variable?
 - Attribute types

Data understanding with PostgreSQL

- ► Get data into PostgreSQL
 - Classical import process
 - Foreign Data Wrappers

Data understanding with PostgreSQL

- ► Get data into PostgreSQL
 - Classical import process
 - Foreign Data Wrappers
- Analyze data distribution
 - Group by and aggregate
 - ► Count, Count Distinct, Min, Max
 - Count NULLs
 - Search for missing links (incomplete foreign keys)

datascientist at

Data understanding with PostgreSQL

- ► Get data into PostgreSQL
 - Classical import process
 - Foreign Data Wrappers
- Analyze data distribution
 - Group by and aggregate
 - ► Count, Count Distinct, Min, Max
 - Count NULLs
 - Search for missing links (incomplete foreign keys)

datascientist at

・ロト ・ 日 ・ モー ・ モー・ うへぐ

- ► Analyze "surprizes"
 - Impossible values
 - Missing values in "required" fields

Data understanding with PostgreSQL - summary

- Good SQL knowledge required
- Tedious manual process
 - repetitive
 - not suitable for large number of attributes

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No built-in visualization

Data understanding with PostgreSQL - summary

- Good SQL knowledge required
- Tedious manual process
 - repetitive
 - not suitable for large number of attributes

datascientist at

- No built-in visualization
- Or maybe...

Data Science with PostgreSQL

Business & data understanding

SQL barchart output

foreign_table_options	5	###
foreign tables		###
information_schema_catalog_name		Menü Tooltip Wab Baarbakan Expaniaren
key column usage		#####
parameters	32	#######################################
pg foreign data wrappers		####
pg foreign servers		#####
pg foreign table columns		##
pg foreign tables		####
pg user mappings		####
referential constraints		#####
role column grants		####
role routine grants		######
role table grants		####
role udt grants		####
role_usage_grants		####
routine_privileges		######
routines	82	*******
schemata		####
sequences	12	#######
sql_features		####
sql_implementation_info		###
sql languages		####
sql packages		###
sql_parts		###
sql_sizing		##
sql_sizing_profiles		###

datascientist.at < □ > < @ > < ছ > < ছ > হ ৩৭৫

Data Science with PostgreSQL

└─ Business & data understanding

Bar chart from GUI tool

datascientist.at এচ১ এট১ এট১ এট১ এট এচ১ এট১ এট১ এট১ এট

- LData Science with PostgreSQL
 - └─ Business & data understanding

Boxplot output

datascientist.at এচ১ এট১ এট১ এট১ এটে এব

Data understanding wrap up

- DBMS not built for this
- It can support more specialized tools

datascientist.at

Data understanding wrap up

- DBMS not built for this
- It can support more specialized tools
- Introduction: R
 - "A free software environment for statistical computing and graphics"

datascientist.at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Available in PostgreSQL

PL/R: A statistical language for PostgreSQL

- R as a standalone language
 - Mathematical and statistical methods
 - Powerful visualization functions
 - Classical, modern and bleeding edge modeling
 - Arrays and data frames are central data types

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Operates only in memory

PL/R: A statistical language for PostgreSQL

- R as a standalone language
 - Mathematical and statistical methods
 - Powerful visualization functions
 - Classical, modern and bleeding edge modeling
 - Arrays and data frames are central data types
 - Operates only in memory
- ► PL/R: R as a loadable procedural language for PostgreSQL

datascientist at

- ► First released in 2003 by Joe Conway
- License: GPL

R usage outside of PostgreSQL

- Development environments
 - ► RStudio (AGPL or commercial, local & web)
 - RKWard, Cantor (KDE projects)
 - StatET (Eclipse)
- ► Frontends
 - R Commander
 - Deducer
 - Rattle
- Web framework: Shiny (AGPL or commercial)

datascientist at

Working with R in PostgreSQL

Install functions in the database

```
Example
select install_rcmd('
    myfunction <-function(x)
      {print(x)}
');</pre>
```

Install without function body

Example

```
CREATE FUNCTION rnorm
  (n integer, mean double precision, sd double precision)
RETURNS double precision[]
AS "
LANGUAGE 'plr';
```

ist at

Sac

Using R in PostgreSQL for data understanding

- Advanced visualization
- Data distributions
- Advanced statistics

Using R in PostgreSQL for data understanding

- Advanced visualization
- Data distributions
- Advanced statistics
- Execution in the database
 - Clumsy, but direct data access

datascientist at

Using R in PostgreSQL for data understanding

- Advanced visualization
- Data distributions
- Advanced statistics
- Execution in the database
 - Clumsy, but direct data access
- Execution outside
 - Simple and interactive, but data transfer

datascientist at

Data Science with PostgreSQL

Preprocessing

Preprocessing

What databases are built for

Preprocessing

- What databases are built for
- Rows: very dynamic
 - Easy to create new rows by joining

datascientist at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- Easy to filter
- Columns: not so much
 - Easy to create new columns
 - Only explicit access

Preprocessing

- What databases are built for
- Rows: very dynamic
 - Easy to create new rows by joining
 - Easy to filter
- Columns: not so much
 - Easy to create new columns
 - Only explicit access
- Wider interpretation of preprocessing
 - Enrichment with external data
 - New attributes from existing ones

datascientist at

- Recoding, recalculation
- Missing value handling

Preprocessing

Preprocessing: organizing workflow

- Common Table Expressions
 - organize processing steps
 - partial and intermediate results

Example

```
WITH source AS (
   SELECT *, ROW_NUMBER() OVER () AS rownum
   FROM source_table
),
no_missings AS (
   SELECT *
   FROM source
   WHERE field1 IS NOT NULL
   AND field2 IS NOT NULL
)
etc.
```

ist at

Sac

• • • • • • • • •

Data Science with PostgreSQL

Preprocessing

Preprocessing: attribute creation

Aggregation

Preprocessing: attribute creation

- Aggregation
- Partial aggregation by window functions
 - In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)

Preprocessing: attribute creation

- Aggregation
- Partial aggregation by window functions
 - ► In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)

datascientist at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Preprocessing

Preprocessing: attribute creation

- Aggregation
- Partial aggregation by window functions
 - In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)

datascientist at

- Comparing to previous/next value
 - ▶ att LAG(att, 1) OVER (ORDER BY ...)

Preprocessing

Preprocessing: attribute creation

- Aggregation
- Partial aggregation by window functions
 - In-group measures, e. g. ratio
 - ▶ att / SUM(att) OVER (PARTITION BY ...)
 - In-group numbering
 - ► ROW_NUMBER() OVER (PARTITION BY ... ORDER BY ...)

datascientist at

- Comparing to previous/next value
 - ▶ att LAG(att, 1) OVER (ORDER BY ...)
- Much easier in SQL than programming languages and data mining tools

Preprocessing: enrichment

PostGIS for geodata

Preprocessing: enrichment

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)

Preprocessing: enrichment

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)

datascientist at

Preprocessing: enrichment

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Big Data (Hadoop Hive, Impala)

Preprocessing: enrichment

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)

datascientist at

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- Big Data (Hadoop Hive, Impala)
- Network sources Multicorn (RSS, IMAP, Twitter, S3, ...)
- Files (CSV, ZIP, JSON, ...)

Preprocessing: enrichment

- PostGIS for geodata
- Foreign data wrappers (see PostgreSQL Wiki)
 - Other databases (other PostgreSQL server, MySQL, Oracle, MSSQL, JDBC, SQL Alchemy ...)
 - ► NoSQL databases (MongoDB, Cassandra, CouchDB, Redis, ...)

datascientist at

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- Big Data (Hadoop Hive, Impala)
- Network sources Multicorn (RSS, IMAP, Twitter, S3, ...)
- Files (CSV, ZIP, JSON, ...)
- Write your own in C or Python or Ruby

Data Science with PostgreSQL

Modeling

Model development

Machine learning algorithms not well suited for SQL

Model development

Machine learning algorithms not well suited for SQL

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- Some attempts to build them
 - Naive Bayes, Linear Regression
 - Difficult for more advanced algorithms

Model development

Machine learning algorithms not well suited for SQL

datascientist.at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Some attempts to build them
 - Naive Bayes, Linear Regression
 - Difficult for more advanced algorithms
- Better done in specialized language or tool
 - ► PL/R
 - PL/Python

- Python procedural language available in PostgreSQL
- scikit-learn: Machine learning toolbox for Python
 - Classification, regression, clustering
 - Model selection, validation
 - Preprocessing
- matplotlib: Generic and statistical plotting library

datascientist at

- Python procedural language available in PostgreSQL
- scikit-learn: Machine learning toolbox for Python
 - Classification, regression, clustering
 - Model selection, validation
 - Preprocessing
- matplotlib: Generic and statistical plotting library

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PL/Python is an alternative to PL/R

Data Science with PostgreSQL

Evaluation

Evaluation of modeling results

- Models return predictions
- Prediction can be compared to known result (target variable)
- ► Measures of model performance: Accuracy, precision, recall, ...

datascientist.at

Evaluation of modeling results

- Models return predictions
- Prediction can be compared to known result (target variable)
- ► Measures of model performance: Accuracy, precision, recall, ...

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results on the training set meaningless

Evaluation of modeling results

- Models return predictions
- Prediction can be compared to known result (target variable)
- ► Measures of model performance: Accuracy, precision, recall, ...

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Results on the training set meaningless
- Split validation
- Cross validation

Evaluation results

- "Good result" depends on the application
- If not good enough,

Evaluation results

"Good result" depends on the application

datascientist.at

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

- If not good enough,
 - ► get more data

Evaluation results

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing

Evaluation results

"Good result" depends on the application

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- If not good enough,
 - get more data
 - do more preprocessing
 - select better classifier

Evaluation results

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing
 - select better classifier
 - optimize classifier parameters

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Evaluation results

- "Good result" depends on the application
- If not good enough,
 - ► get more data
 - do more preprocessing
 - select better classifier
 - optimize classifier parameters
- Cycle: preprocessing modeling evaluation

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Evaluation results

- "Good result" depends on the application
- If not good enough,
 - get more data
 - do more preprocessing
 - select better classifier
 - optimize classifier parameters
- Cycle: preprocessing modeling evaluation

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Better done in data mining environment

Data Science with PostgreSQL

Deployment

Data Science with PostgreSQL

Deployment

Advantages of deployment in the database:

Less overhead

Advantages of deployment in the database:

- Less overhead
- Instant application using triggers

Advantages of deployment in the database:

- Less overhead
- Instant application using triggers
- Well-known execution environment

datascientist.at

4 ロト 4 団 ト 4 三 ト 4 三 ト 9 へ ()

Advantages of deployment in the database:

- Less overhead
- Instant application using triggers
- Well-known execution environment
- Functionality available over standard interface

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Advantages of deployment in the database:

- Less overhead
- Instant application using triggers
- Well-known execution environment
- Functionality available over standard interface

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some models easily expressed in SQL

Deployment of PL/R or PL/Python models

Model developed in database or outside

Deployment of PL/R or PL/Python models

- Model developed in database or outside
- Put into global context
 - PL/R: load("saved object", .GlobalEnv)

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► PL/Python: Global dictionary "GD"
- Application function in matching language
 - Uses existing model
 - Returns target variable

Deployment of PL/R or PL/Python models

- Model developed in database or outside
- Put into global context
 - PL/R: load("saved object", .GlobalEnv)
 - ► PL/Python: Global dictionary "GD"
- Application function in matching language
 - Uses existing model
 - Returns target variable
- Trigger func or UPDATE uses application function

datascientist at

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PostgreSQL's support for data science tasks

Best: preprocessing, deployment

PostgreSQL's support for data science tasks

datascientist.at

- Best: preprocessing, deployment
- Modern SQL for preprocessing

Summary

- PostgreSQL's support for data science tasks
 - Best: preprocessing, deployment
- Modern SQL for preprocessing
- Foreign Data Wrappers for data integration

datascientist.at

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Summary

- PostgreSQL's support for data science tasks
 - Best: preprocessing, deployment
- Modern SQL for preprocessing
- Foreign Data Wrappers for data integration

datascientist at

・ロト ・西ト ・ヨト ・ヨー うらう

Procedural languages for data mining

- Balázs Bárány, <balazs@tud.at>
- https://datascientist.at/

